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The performance of a new treatment consisting of integrated arrays of constrained visco
elastic damping layers passively controlled by a specially arranged network of permanent
magnets is evaluated. The interaction between the magnets and the viscoelastic layers aims
at enhancing the energy dissipation characteristics of the damping treatments. In this
manner, it would be possible to manufacture structures that are light in weight and are
capable of meeting strict constraints on structural vibration when subjected to unavoidable
disturbances. In this paper, a "nite element model is developed to study the interactions
between the permanent magnets and their in#uence on the dynamic behavior of treated
beams. The model is used to develop a thorough understanding of the basic phenomena
governing the operation of this new class of smart magnetic constrained layer damping
(MCLD) treatments. The performance characteristics of the MCLD are determined for fully
treated beams and compared with the corresponding performance of conventional passive
constrained layer damping (PCLD). Such a comparison is used to determine the merits and
limitations of the proposed MCLD treatments.

( 2000 Academic Press
1. INTRODUCTION

Passive constrained layer damping (PCLD) treatments have been successfully utilized, for
many years, to damp out the vibration of #exible structures ranging from simple beams to
complex space structures [1]. However, the e!ectiveness of these treatments has been
limited to a narrow operating range because of the signi"cant variation of the properties of
damping materials with temperature and frequency. Hence, treatments that are a hybrid
between active and passive damping have been considered as viable alternatives to the
conventional passive damping treatments. Such hybrid treatments aim at using active
control mechanisms to augment the passive damping and to compensate for its
performance degradation with temperature or frequency. Among the commonly used
hybrid treatments are the active constrained layer damping (ACLD) treatments [2}5], and
the active piezoelectric-damping composites (APDC) [6}8]. In the ACLD treatments the
piezo-"lm is actively strained in a manner to enhance the shear deformation of the
viscoelastic damping layer in response to the vibration of the base structure. In the APDC
treatments an array of piezo-ceramic rods embedded across the thickness of a viscoelastic
polymeric matrix is electrically activated to control the compressional damping
characteristics of the matrix directly bonded to the vibrating structure.
0022-460X/00/390657#26 $35.00/0
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658 M. RUZZENE E¹ A¸.
Although the ACLD and APDC treatments have proven to be very successful in damping
out structural vibration, they require the use of piezoelectric "lms, ampli"ers and control
circuits. As simplicity, reliability, practicality and e!ectiveness are our ultimate goal in
controlling the vibration and noise; the concept of the magnetic constrained layer damping
(MCLD) is introduced to eliminate the need for these "lms, associated circuitry as well as
any external energy [9, 10].

In this paper, a "nite element model is developed to fully understand the phenomena
governing the operation of the MCLD treatments and to evaluate their e!ectiveness in
controlling the vibration of #exible beams as compared to conventional PCLD. In
particular, the model describes the interaction between the dynamics of beams and the
magnetic "eld generated by magnetic constraining layers. The model is used to predict the
sti!ness and mass matrices of the beam/MCLD system as functions of the properties of the
permanent magnets, viscoelastic cores and base beam. This analysis is guided by the theory
of magneto-elasticity developed by Moon [11] and Miya et al. [12, 13] for untreated and
undamped base structures.

The paper is organized in "ve sections and one appendix. In section 1, a brief introduction
is given. In section 2, the concept of the MCLD treatment is presented. The "nite element
formulation for the magnetic domain and structural vibration is given in section 3. The
performance of beams fully treated with the MCLD treatment is presented in section 4 with
comparisons with the performance of beams treated with conventional PCLD treatments.
In section 5, the conclusions of the present study are summarized.

2. CONCEPT OF MAGNETIC CONSTRAINED LAYER DAMPING (MCLD)

The concept of the MCLD can best be understood by considering the schematic
representation of the PCLD treatment shown in Figure 1. The unde#ected con"guration of
the structure/PCLD system is shown in Figure 1(a) whereas Figure 1(b) shows the de#ected
con"guration under the action of an external bending moment. Due to such loading, shear
strains c

T
and c

B
are induced in the top and bottom viscoelastic layers respectively.

Increasing these shear strains is essential to enhancing the energy dissipation characteristics
of the damping treatment. A preferred way for increasing the shear strains is to replace the
conventional constraining layers by properly arranged and designed magnetic layers.

Figure 2 shows two possible arrangements of the magnetic constraining layers, where the
inter-layer interaction is either in repulsion as in Figure 2(a) or in attraction as in Figure
2(b). Figure 2(a) shows that MCLD, with layers in repulsion, have strains c

Tr
and c

Br
which

are lower than the strains c
T

and c
B

of conventional PCLD treatments. Hence, it is not
bene"cial to arrange the magnetic layers in repulsion because of their low energy dissipation
Figure 1. Conventional multi-segment passive constrained layer damping: (a) unde#ected con"guration and (b)
de#ected con"guration.



Figure 2. Possible arrangements of the magnetic constrained layer damping: (a) layers in repulsion and (b) layer
in attraction (PCLD-dashed lines and MCLD-solid lines)
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characteristics. This is in spite of the fact that such MCLD arrangement induces in-plane
tensile loads in the base structure which tend to enhance its sti!ness.

It is evident however that the shear strains c
Ta

and c
Ba

resulting from the attraction
arrangement are much higher than the strains c

Tr
and c

Br
of the repulsion arrangement.

Note also that the strains c
Ta

and c
Ba

exceed the strains c
T

and c
B
of the conventional PCLD

treatment. Therefore, signi"cant improvement of the damping characteristics can be
achieved by using MCLD treatments with magnetic layers in attraction.

Such improved damping exists in ACLD and APDC treatments but at the expense of the
complexities associated with the use of piezo-sensors, piezo-actuators, control circuitry
and/or external energy. Hence, the use of the MCLD improves the damping characteristics
of conventional PCLD treatments in a much simpler and e$cient way. Hybrid
con"guration of the ACLD and MCLD can however be viable when the self-damped
characteristics of the MCLD are to be enhanced in order to compensate, for example, for
performance degradation due to changes in the operating temperature or to improve/shape
the frequency characteristics of the composite assembly.

3. FINITE ELEMENT MODELLING OF BEAMS WITH MCLD TREATMENT

3.1. MAGNETIC FINITE ELEMENT

The magnetic properties of the region surrounding the permanent magnets in the MCLD
are obtained by the numerical computation of the magnetic vector potential.
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3.1.1. Mathematical formulation

In static magnetic problems, the relations between the magnetic "eld H, the magnetic
induction B, the current density j and the magnetization M are given by Maxwell's equation
[14]:

curl H"j, div B"0, (1, 2)

and

B"k
0
(H#M), (3)

where k
0

is the permeability in vacuum.
The relation between M and H in regions occupied by isotropic materials can be

expressed as

M"(k
r
!1)H, (4)

where k
r
is the relative permeability of the material.

Permanent magnets are generally made of anisotropic material and therefore the
magnetization M is given by

M"M(B
m
)m, (5)

m being the direction of the magnetization and B
m

the induction in that direction.
The magnetic properties of a given magnetic domain can be determined by minimizing its

magnetic energy [15], which is de"ned as

E
m
"P

V
AP

B

0

H )dB!j )AB d<, (6)

where < is the volume of the region where the magnetic properties have to be evaluated.
In equation (6), A is the magnetic potential, de"ned as

B"curl A. (7)

For beams lying in the x}z plane, the vector potential A is perpendicular to the x}y plane:

A"A(x, y) ) k, (8)

k being the unit vector in the z direction. From equations (7) and (8), the magnetic induction
B, becomes

B"B
x
(x, y) i#B

y
(x, y) j"!

L
Ly

(A(x, y)) i#
L
Ly

(A (x, y)) j (9)

and the magnetization M is

M(B
m
)"M(B

x
cos a

m
#B

y
sin a

m
)m, (10)

where a
m

is the angle between the direction of magnetization m and the x-axis.
In the MCLD case, the analysed region does not contain any current windings, then

current density j in equations (1) and (6) is equal to zero and the magnetic "eld is generated
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only by the presence of permanent magnets. The total magnetic energy is hence the sum of
the energy due to anisotropic material E

man
, i.e., the permanent magnets:

E
man

"b P
G
A

1

k
0
P

B

0

B )dB!P
B

0

M )dBB dx dy

"b P
G
A

1

2k
0
CA

LA

LxB
2
#A

LA

Ly B
2

D!P
B

0

M(m) dmB dx dy (11)

and of the energy E
mis

given by isotropic non-magnetic material, i.e., base beam, viscoelastic
cores and surrounding air, such that

E
mis
"b P

G
AP

B

0

m
k
0
k
r
(m)

dmB dx dy (12)

In equations (11) and (12), b is the width of the o! plane region and G is the area of the
considered region on the x, y plane.

Hence, the total magnetic energy of the domain is given by

E
m
"E

man
#E

mis
. (13)

3.1.2. Finite element formulation

Equations (11) and (12) express the magnetic energy as a function of the magnetic
potential A. The magnetic properties of the magnetic domain will be determined by "nding
the values of the potential A that make E

m
stationary. Accordingly, the region is divided

into triangular "nite elements, where the potential A is assumed to be linear [16]:

Ae(x, y)"b
1
#b

2
)x#b

3
) y. (14)

Equation (14) can be written in the matrix form

Ae (x, y)"[1 x y] G
b
1

b
2

b
3
H . (15)

The element vector potential Ae (x, y) can be expressed in terms of the nodal potentials
A

i
(i"1, 2, 3):

Ae (x, y)"[1 x y] [D~1] G
A

1
A

2
A

3
H"[N

m
(x, y)] MAeN. (16)

where the matrix [D], de"ned as

[D]"C
1 x

1
y
1

1 x
2

y
2

1 x
3

y
3
D, (17)

contains the nodal co-ordinates [x
i
, y

i
] (i"1, 2, 3). Also in equation (16), [N

m
(x, y)] is the

matrix of the magnetic shape functions.
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From equation (16), the contribution to the magnetic energy from the eth element of the
anisotropic material is given by

Ee
man

"

1

2
MAeNT[K

m
]MAeN!MMgNMAeN, (18)

where [K
m
] is the magnetic sti!ness matrix, given by

[K
m
]"

b

2k
0
P
G

M[N
m
]T
x
[N

m
]
x
#[Nm]T

y
[N

m
]
y
N dx dy. (19)

The subscripts x and y in equation (19) denote partial di!erentiation with respect to x and
y respectively. It can be shown that the partial derivatives of the shape functions considered
in equation (19) do not depend on x and y, therefore the magnetic sti!ness matrix reduces to

[K
m
]"

b

2k
0

([N
m
]T
x
[N

m
]
x
#[N

m
]T
y
[N

m
]
y
)ae (20)

where ae is the area of the eth element of the magnetic domain.
In equation (18), MMgN is the magnetization vector, de"ned as

MMgN"b ) ae )M(B
m
) [cos a

m
sin a

m
] C

[N
m
]
x

[N
m
]
y
D MAeN. (21)

The contribution to the energy of the magnetic domain by an element of the isotropic
material is obtained by setting the magnetization vector in equation (18) to zero.

The values of the magnetic potential minimizing the magnetic energy are obtained by
partially di!erentiating equation (18) with respect to the nodal potentials:

LE
m

LMAeN
"0. (22)

This yields the following equation that describes the properties of the magnetic
domain:

[K
m
]MAeN"MMgN. (23)

Equation (23) is generally non-linear in the potentials because of the non-linear
magnetization characteristic of the permanent magnets and of the relative permeability of
the isotropic materials, as described by equation (11) and (12). If appropriate constant
values for the magnetization and for the relative permeability are assumed, then the
equations can be linearized and an approximate solution can be easily found.

3.1.3. Static magnetic force

The static magnetic forces F(st)
m

are determined by applying the virtual work principle
[17]. If s is the line of action of the magnetic forces, then F(st)

m
can be determined from

F(st)
m

"!

LE
m

Ls
"!

L
Ls AP

V
AP

B

H )dBB d<B. (24)
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During small translations in the s direction of the movable parts, which belong to the
magnetic domain, the magnetic potential is assumed to remain constant. Therefore,
considering the expression for the magnetic sti!ness matrix given by equation (20), equation
(24) can be rewritten as

F(st)
m

"

1

2
MAeNT

L
Ls

([K
m
]) MAeN. (25)

The derivative of the magnetic sti!ness matrix is determined by considering the
expression of the derivative of the shape function [N

m
] with respect to x and y. In

particular, it can be shown that

[N
m
]
x
"

1

2ae
[y

2
!y

3
y
3
!y

1
y
1
!y

2
]"

1

2ae
[>] (26)

and

[N
m
]
y
"

1

2ae
[x

3
!x

2
x
1
!x

3
x
2
!x

1
]"

1

2ae
[X], (27)

where x
i
and y

i
are the nodal co-ordinates.

Assuming that the area of the element ae remains constant, then the magnetic force can be
expressed as

F(st)
m

"!

b

8k
0
ae

MAeNT
L
Ls

([>]T[>]#[X]T[X]) MAeN. (28)

The x and y components of the magnetic force are determined from equation (28) as

F(st)
my

"!

b

8k
0
ae

MAeNT
L
Ly

([>]T[>])MAeN (29)

and

F(st)
mx

"!

b

8k
0
ae

MAeNT
L
Lx

([X]T[X])MAeN, (30)

Equations (29) and (30) can be rewritten as

F(st)
my

"MAeN[U
y
]MAeN, F(st)

mx
"MAeNT[U

x
]MAeN, (31, 32)

where

[U
y
]"!

b

4k
0
ae

([>]T[>@]), [U
y
]"!

b

4k
0
ae

([X]T[X@]). (33, 34)

In equations (33) and (34), [>@] and [X@] are matrices containing the derivatives of the
nodal co-ordinates with respect to x and y. For a given point [x

1
, y

1
], these derivatives are

given by

Ly
i

Lx
"0,

Lx
i

Lx
"p,

Ly
i

Ly
"p,

Lx
i

Ly
"0,
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with p"1 for the nodes belonging to a moving part of the magnetic domain and p"0 for
the nodes of all the other elements.

3.1.4. Comparison with experimental data

The prediction of the forces using the magnetic "nite element model presented above are
validated experimentally in this section. In particular, the simple case of two permanent
magnets, made of neodymium blocks (0)375]0)8]2)5 cm) with residual induction
B
r
"1)08 T and magnetized through their thickness, has been considered. In the "nite

element model, the two magnets have been divided into eight elements along the length and
four elements along the thickness. Figure 3 shows the position of the magnets inside the
meshed region, the geometry of the region and the magnetization vectors. The results
obtained from the analysis are shown in Figures 4}6. In particular, Figure 4 displays the
distribution of the magnetic vector potential over the magnetic domain. Figures 5 and
6 show the corresponding vector plots of the magnetic induction and the magnetic force
acting on one magnet respectively. The x-component of the resultant force is computed by
summing the contributions from all the elements and is compared with experimental
measurements for di!erent values of the gap between the permanent magnets. The
comparison is made when both the magnets are arranged in attraction and repulsion. The
comparison between "nite element predictions and experimental measurements is
presented in Figure 7. The "gure shows good agreement for the case of the magnets in
repulsion (Figure (7(a)). The "nite element model seems to overestimate the force when the
magnets are in attraction (Figure (7(b)).

3.2. STRUCTURAL FINITE ELEMENT MODEL OF THE BEAM/MCLD SYSTEM

The "nite element model of a beam with magnetic constrained layer damping MCLD
treatment is developed to describe the interaction between the dynamics of the plain beam,
Figure 3. Magnets with the surrounding region grid and magnetization vectors (attraction).



Figure 4. Magnetic potential contour lines.

Figure 5. Magnetic induction vector plot for the con"guration in Figure 1.
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viscoelastic layers and constraining layers. A full and symmetric treatment of the beam is
considered here.

The structural "nite element model presented hereafter is coupled with the magnetic "nite
element model described in section 3.1.

3.2.1. Geometry and basic kinematic assumptions

A schematic drawing of the geometry of a beam with symmetric MCLD treatment is
shown in Figure 8.



Figure 6. Magnetic force vector plot for the con"guration in Figure 1.
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The basic assumptions used in the formulations of the "nite element are those commonly
used for sandwiched beams: (1) the shear strain in the constraining layers and in the beam
are negligible; (2) the longitudinal stresses in the viscoelastic cores are negligible; (3) the
transverse displacements w of all points on the cross-section are assumed to be equal; (4) the
viscoelastic cores dissipate energy and have a linear viscoelastic behavior, while the
constraining layers and the beam are assumed to be elastic.

From the geometry of Figure 9, the shear strains in the viscoelastic cores can be expressed
as

c
2
"

1

h
2

[u
1
!u

3
#d

2
w

x
], c

4
"

1

h
4

[u
3
!u

5
#d

4
w
x
], (35a,b)

where u
1

and u
5

are the longitudinal de#ections of the constraining layers, u
3

is the
longitudinal de#ection of the base beam and w

x
denotes the slope of the de#ection line. The

parameters d
2

and d
4

are

d
2
"h

2
#1

2
(h

1
#h

3
), d

4
"h

4
#1

2
(h

5
#h

3
), (36a,b)

where h
1
, h

5
and h

3
are the thickness of the constraining layers and of the base beam

respectively. Also h
2

and h
4

are the thickness of the viscoelastic layers.
The longitudinal de#ections u

2
and u

4
of the viscoelastic cores are determined in terms of

the longitudinal displacements u
1

and u
5

and of the slope of the de#ection line w
x

as

u
2
"

1

2 Cu1
#u

3
#A

h
1
!h

3
2 B w

xD and u
4
"

1

2 Cu5#u
3
#A

h
5
!h

3
2 B w

xD (37a,b)

3.2.2. Degrees of freedom and shape functions

The MCLD elements considered here are one-dimensional elements, bounded by two
nodal points. Each node has four degrees of freedom to describe the longitudinal



Figure 7. Magnetic force versus the distance between the permanent magnets: comparison with experimental
data for magnets in (a) repulsion and (b) attraction; (f, theory; r, experiment).

Figure 8. Full MCLD treatment for cantilevered beam with base magnets.
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Figure 9. Schematic drawing of the de#ections and forces acting on the MCLD: (a) unde#ected and (b) de#ected
con"guration.
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displacements of the two constraining layers u
1
and u

5
, the longitudinal displacement of the

base beam u
3
, the transverse de#ection w and the slope w

x
. The de#ection vector Md*N of

each MCLD element is given by

MdeN"Mu
1i

, u
3i

, u
5i

, w
i
, w

xi
, u

1j
, u

3j
, u

5j
, w

j
, w

xj
NT, (38)

i and j denoting the left and right node respectively.
The shape functions describing the displacements over the element are assumed to be

u
1
"a

1
x#a

2
, u

3
"a

3
x#a

4
, u

5
"a

5
x#a

6
, w"a

7
x3#a

8
x2#a

9
x#a

10
(39)

Equation (39) can be expressed in a compact form as

Mu
1
, u

3
, u

5
, w, w

x
NT"[N

1
, N

2
, N

3
, N

4
, N

5
] Ma

1
, a

1
,2, a

10
NT. (40)

The constants a
i
are determined in terms of the nodal displacements:

MueN"[¹]Ma
1
, a

1
,2, a

10
NT, (41)

where [¹] is a transformation matrix obtained by imposing the value of the shape functions
at the boundaries of the element. The de#ections at any location of the element can
therefore be expressed as a function of the nodal displacements using the [N] and [¹]
matrices as follows:

MuN"[N][¹~1]MdeN (42)

where

[N]"[N
1
, N

2
, N

3
, N

4
, N

5
] (43)

3.2.3. Magneto-elastic coupling

The magnetic forces calculated using the "nite element model presented in section 3.1 are
applied to the nodes of the beam/MCLD element. In general, the magnetic forces have
x and y components, but because of symmetry, only the x components are non-zero.
Therefore, the magnetic forces are applied to the axial displacements u

1
and u

5
of the
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constraining layers. These displacements a!ect the nodal co-ordinates of the element, which
are contained in the expressions of the magnetic force (matrices [>] and [X] in equations
(33) and (34)). This yields

x
1
"x

10
#u

i
, x

2
"x

20
#u

i
, x

3
"x

30
#u

i
,

(44)
y
1
"y

10
#w, y

2
"y

20
#w, y

3
"y

30
#w,

where w is the transverse de#ection of the beam, while u
i
(i"1, 5) denote the longitudinal

displacement of the upper or lower constraining layers. Accordingly, the derivative of the
magnetic shape functions, given by equations (26) and (27), can be rewritten as

[N
m
]
x
"

1

2ae
([>]#MdeNT[X

y
]T ) (45)

and

[N
m
]
y
"

1

2ae
([X]#MdeNT[X

x
]T ), (46)

where the matrices [X
y
] and [X

x
] de"ne the structural degrees of freedom that in#uence the

y and x nodal co-ordinates of the magnetic domain. Therefore, the static expression for the
magnetic force given in section 3.1.3 needs to be corrected by introducing an additional
term that accounts for the fact that the permanent magnets are mounted on a vibrating
structure. As mentioned above, only the x component of the magnetic force is non-zero and,
according to equation (46), it can be written as

F
mx
"MAeNT ([U

x
]#[U(d)

x
])MAeN, (47)

where the matrix [U(d)
x

], de"ned as

[U(d)
x

]"!

b

8k
0
ae

([X
x
]MdeN[X@]#MX@NTMdeNT[X

x
]T) (48)

accounts for the e!ect of the beam vibration on the expression of the force.
Note that the magnetic force, as predicted by equation (47), is a non-linear function of the

magnetic potential and the beam displacement. For small displacements about the
beam's equilibrium con"guration, it can be assumed that the magnetic potential remains
constant during the beam vibration. Also, the magnetic forces can be linearized about the
equilibrium con"guration as follows:

F
ma
:F(st)

mx
#

LF
mx

Lu
i
K
T

ui/0

u
i
, (49)

where F(st)
mx

is the static component of the magnetic force evaluated in section 3.1.3 and
u
i
denotes the longitudinal displacement of the upper or lower constraining layer.
After some manipulations, equation (49) can be written as

F
mx
:MAe

0
NT[U

x
]MAe

0
N!

!b

4k
0

MdeNT[X
x
]T[X@]T"F(st)

mx
#F(d)

mx
, (50)
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which includes the static component F(m)
mx

of the magnetic force as well as its dynamic
component F(d)

mx
, which is proportional to the nodal de#ection vector MdeN. In equation (50),

subscript &o' denotes the equilibrium position.

3.2.4. Equation of motion

The equation of motion of the beam with MCLD treatment can be obtained by applying
Hamilton's principle [18]

P
t2

t1

d(¹!;#=
m
#=

e
) dt"0, (51)

where d ( ) ) denote the "rst variation, t
1

and t
2

are the initial and "nal time, ¹ and; are the
total kinetic and strain energies of the element,=

e
is the work done by the external loads

and=
m

is the work of the magnetic forces. The derivation and the expression of the total
kinetic and potential energies are given in Appendix A. The work of the external loads MFN
can be expressed as

=
e
"MFNMdeN, (52)

while the work done by the magnetic forces is given by

=
m
"F(d)

mx
MbNTMdeN!

1

2
F(st)

mx P
L

0

w2
x

dx, (53)

where MbN is a vector de"ning the points of application of magnetic forces. Substituting the
expression of the magnetic force given in equation (50) yields

=
m
"!MdeNT[K

geo
]MdeN!MdeNT[K

dm
]MdeN, (54)

where [K
geo

] is the geometric matrix de"ned as

[K
geo

]"F(st)
mx

[¹~1]T AP
L

0

NT
4x

N
4x

dxB [¹~1]. (55)

The geometric matrix accounts for the e!ect of the static term of the magnetic forces. In
equation (54), the matrix [K

dm
] is the magneto-structural sti!ness matrix:

[K
dm

]"
b

2k
0
ae

MbN[X@][X
x
]. (56)

By performing the variations on the expressions of the strain and kinetic energies and on
the work of the external and magnetic forces, the following equation of motion for the
beam/MCLD system is obtained:

[M]MdK eN#([K]#[K
dm

]#[K
geo

])MdeN"MFN, (57)

where [M] and [K] denote the element mass and sti!ness matrices, given in Appendix A.
The static magnetic interactions, corresponding to the "rst term in equation (54), are
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applied to the longitudinal degrees of freedom of the beam and their e!ect is accounted for
by adding a geometric sti!ness matrix to the sti!ness (Appendix A).

Equation (57) represents the basic equation governing the dynamic of a beam/MCLD
element. Assembly of the di!erent elements using classical "nite element methods and
imposing the boundary conditions gives the equation of motion of the overall beam/MCLD
system. The resulting equation can be used to predict the dynamics characteristics of the
system for di!erent arrangements of the magnets on the constraining layers.

4. PERFORMANCE OF BEAMS WITH MCLD TREATMENT

4.1. MODEL OF THE PERMANENT MAGNETS AND SURROUNDING REGION

The magnetic properties of the region surrounding the permanent magnets in the base
and on the constraining layers of the beam are determined using the "nite element model
presented in section 3.1. The magnets used for the validation of the magnetic force
calculation (section 3.1.4), are considered here (neodymium blocks 0)375]0)8]2)5 cm,
magnetized through the thickness, with residual induction B

r
"1)08 T). Each magnet is

divided into four elements along the length and two elements along the thickness. The
dimensions of the surrounding region are adjusted in order to attain a vanishing vector
potential at the boundaries and to have the magnets placed in the center so that a symmetric
con"guration can be preserved. Figure 10 shows the meshed region with the four magnets:
the magnets are in repulsion and the gap between them is 4 mm. The predicted magnetic
properties of the region are presented in Figure 11}13. Figures 12 and 13, in particular,
show the position of the MCLD beam with respect o the permanent magnets.

4.2. THE BEAM MODEL

The performance of a cantilever aluminum beam, 30 cm long, 0)05 cm thick and 2)5 cm
wide are evaluated. The viscoelastic and the aluminum constraining layers are 0)3125 and
Figure 10. Mesh of the four magnets and surrounding region and magnetization vectors (4 mm gap).



Figure 11. Magnetic potential contour lines for the con"guration in Figure 7.

Figure 12. Vector plot of the magnetic induction for the con"guration in Figure 7.
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0)025 cm thick respectively. The storage modulus of the viscoelastic cores is
G@"0)4E6 N/m2, the loss factor is g"0)4 and the density is o"150 kg/m3.

The "nite element mesh used for the magnetic analysis is also used here, for the initial part
of the beam, so that the nodal magnetic forces can be applied to the constraining layers. For
the remaining part, the beam is divided into 40 elements. The "rst three modes of the beam,
without the permanent magnets, are 5)31, 74)29 and 133)81 Hz.



Figure 13. Vector plot of the magnetic force on the magnets on the constraining layers for the con"guration in
Figure 7.
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4.3. BEAM WITH MAGNETS IN THE BASE AND IN THE CONSTRAINING LAYERS

The model of the beam/MCLD with magnets on the base and on the constraining layers
is considered "rst. The response of the beam is computed for magnets arranged in attraction
and repulsion. The beam is excited by a harmonic motion of its base. Three di!erent
amplitudes of the base motion are used in the analysis: w

0
"0)23, 0)17 and w

0
"0)11 mm.

The in#uence of the magnetic forces on the beam tip displacement is determined for
di!erent values of the gap along the x direction: 2, 4, 6 and 18 mm. For gap width equal to
18 mm the magnetic forces become negligible and the MCLD treatment behaves like
a conventional PCLD treatment.

Figure 14 shows the frequency response function of the beam with MCLD treatment for
di!erent gaps and amplitudes of the base motion, with the magnets arrange in repulsion.
The presence of tensile axial loads on the beam due to the magnetic interaction increases the
sti!ness of the beam and reduces the shear deformation of the viscoelastic layers.
Accordingly, the damping characteristics of the beam are reduced and the amplitudes of
vibration are increased.

These phenomena are reversed when the magnets are arranged in attraction (Figure 15).
The presence of axial compression loads reduces the "rst natural frequency but enhances
the damping characteristics. In particular, vibration attenuation of the amplitude of the tip
is observed for small gaps and high amplitudes of excitation.

Figure 16 summarizes the performance on the MCLD treatment and underlines that
magnets in attraction ensures better attenuation than the conventional PCLD treatment,
particularly for small gaps and high amplitudes of excitation.

4.4. BEAM WITH MAGNETS IN THE BASE ONLY

The performance of the treatment is also studied when only two magnets in the base of the
beam are considered. Two blocks of ferromagnetic material (relative permeability k

r
"1000)



Figure 14. Frequency response of the beam tip for magnets in repulsion with di!erent amplitudes of base
excitation. (a) w

0
"0)11 mm, (b) w

0
"0)17 mm, (c) w

0
"0)23 mm (**, 2 mm gap; } ) ) }, 4 mm gap; } ) }, 6 mm

gap; }; 18 mm gap).
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are used instead of the magnets of the previous arrangements. In this con"guration, the design
of the MCLD is simpli"ed and the interactions result only in attraction forces.

Figure 17 shows the con"guration of the magnetic region with the two magnets and
the blocks of ferromagnetic material. The resulting magnetic properties of the region are
presented in Figure 17}20. The response of the MCLD treatment, in its new con"guration,
is again studied for di!erent gaps and amplitudes of the base excitation. In particular, the
same values of the gap and of w

0
used before are considered. The results s are presented

in Figure 21. This new con"guration with two magnets enhances also the damping
characteristics of the beam, and the performance is very similar to that obtained using four
magnets in attraction.



Figure 15. Frequency response of the beam tip for magnets in attraction with di!erent amplitudes of base
excitation: (a) w

0
"0)11 mm, (b) w

0
"0)17 mm, (c) w

0
"0)23 mm (**, 2 mm gap; } ) ) }, 4 mm gap; } ) }, 6 mm

gap; }} ) ; 18 mm gap).
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Figure 22 summarizes the e!ect of the gap and the base excitation on the performance of
the MCLD treatment.

5. CONCLUSIONS

This paper has presented a new class of magnetic constrained layer damping (MCLD)
treatments which relies in its operation on an array of viscoelastic damping layers passively
controlled by a specially arranged network of permanent magnets. The proposed MCLD
treatment enhances the damping characteristics of conventional PCLD treatments without



Figure 16. E!ect of gap and amplitude of excitation for magnets in (a) repulsion and in (b) attraction (}d},
w
0
"0)23mm; }m}, w

0
"0)17 mm; }.}, w

0
"0)11 mm).
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the need for any electronic sensors, control circuitry or external energy. Such excellent
feature of the MCLD makes its operation simple, reliable and e$cient as compared to other
surface damping treatments.

A "nite element model is developed to evaluate the e!ectiveness of the MCLD in
controlling the vibration of #exible beams. The model describes the dynamic behavior
of beams and the coupling with the magnetic forces generated by the constraining
layers. The model is used to predict the sti!ness and mass matrices of the beam/MCLD
system as functions of the properties magnets, viscoelastic cores and base beam.
The response of the tip of a cantilever beam is evaluated in the frequency domain
for di!erent arrangements of the permanent magnets. The obtained results suggested
that constraining layers placed in a state of magnetic attraction produce high damping
characteristics and that improved structural damping is achieved by reducing the gap
between neighboring layers.



Figure 17. Mesh of a region with two permanent magnets and ferromagnetic material.

Figure 18. Magnetic vector potential contour lines.
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It is important to note that a hybrid of the MCLD and ACLD treatments can be viable
means for enhancing the damping characteristics of the MCLD. The hybrid con"guration
will be able to compensate, for example, for performance degradation due to changes in the
operating temperature or to improve/shape the frequency response characteristics of the
composite assembly.

Work is now in progress to optimize the performance of the MCLD, develop design
guidelines and extend its application to plates and shells.



Figure 19. Vector plot of the magnetic induction.

Figure 20. Vector plot of the magnetic forces on the ferromagnetic material.
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Figure 21. Frequency response of the beam tip with ferromagnetic material for di!erent amplitudes of base
excitation: (a) w

0
"0)11 mm, (b) w

0
"0)17 mm, (c) w

0
"0)23 mm (**, 2 mm gap; } ) ), 4 mm gap; } ) }, 6 mm gap;

}} ) , 18 mm gap).
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APPENDIX A: MASS AND STIFFNESS MATRICES

A.1. MASS MATRIX

The kinetic energy ¹ is written as

¹"

1

2
+

j/1,3,5
P

Lj

0

m
j
(w2

t
#u2

tj
) dx"

1

2
MDQ eNT[M][DQ eN, (A.1)
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where [M] is the mass matrix given by

[M]"P
L

0

[N]T[m][N] dx, (A.2)

and where [N]"[N
1

N
2

N
3

N
4

N
5
], and [m]"diag[m

1
m

3
m

5
m

t
0] with

m
t
"+5

i/1
m

i
.

A.2. STIFFNESS MATRIX

The strain energy ; is written as

;"

1

2 CP
Lj

0
GA +

j/1,3,5

EI
jB w2

xx
# +

j/1,3,5

ES
j
u2
xjH dxD#

1

2 P
L

0
CGb +

j/2,4

h
j
c2
j

dxD
"

1

2
MDeNT[K]MDeN. (A.3)

where [K] is the structural sti!ness matrix given by

[K]"P
L

0

M[N
xx

]T[B
w
][N

xx
]#[N

x
]T[B

u
][N

x
] dx

#P
L

0

GbM[N]T (h
2
MB

s2
NTMB

s2
N#h

4
MB

s4
NTMB

s4
N )MN]N dx (A.4)

with matrices [B
w
], [B

u
], MB

s2
N and [B

s4
N given by

[B
w
]"A +

j/1,3,5

EI
jB C

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1D , [B

u
]"C

ES
1

0 0 0 0
0 ES

3
0 0 0

0 0 ES
5

0 0
0 0 0 0 0
0 0 0 0 1D , (A.5)

MB
s2

N"M1 !1 0 0 d
2
N/h

2
and MB

s4
N"M0 1 !1 0 d

4
N/h

4
.

APPENDIX B. NOMENCLATURE

H magnetic "eld
j current density or unit vector for y direction
B magnetic induction
M magnetization
m direction of magnetization
k
0

permeability in vacuum
k
r

relative permeability
E
m

magnetic energy
A magnetic potential
V volume of magnetic domain
i unit vector for the x direction
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k unit vector for the z direction
a
m

angle de"ning the direction of the magnetization
b o!-plane width of the magnetic domain
G area of the magnetic domain
[N

m
] magnetic shape functions

[D] matrix of nodal co-ordinates
[K

m
] magnetic sti!ness matrix

ae magnetic domain element area
MMgN magnetization vector
F(st)
ms

static component of the magnetic force in the s direction
F(d)
mx

dynamic component of the magnetic force in the s direction
c shear strain
u longitudinal displacement
w vertical de#ection
h layer thickness
MdeN vector of generalized nodal displacements
MuN vector of generalized element displacements
[i] matrix of structural nodal coordinates
[N] structural shape functions
; strain energy
¹ kinetic energy
=

e
work done by external forces

=
m

work done by magnetic forces
E Young's modulus
A area of cross-section
¸ element length
G shear modulus
I second moment of area
[M] mass matrix
o density
[K] sti!ness matrix
MFN load vector
MbN vector for localization of the magnetic forces
[K

sm
] magneto-elastic coupling matrix

[K
dm

] magneto-structural sti!ness matrix
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